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The effect of interaction on the boundary layer induced by a convected rectilinear 
vortex is considered. Two schemes are employed in the numerical discretization of 
the edge interaction condition; the first, developed by Veldman (1981) is useful at 
larger Reynolds numbers but fails to capture the interactive phase of the motion for 
Reynolds numbers less than 8 x lo4. A scheme devised by Napolitano, Werld & Davis 
(1978) is employed at smaller Reynolds numbers and yields similar results to 
Veldman's scheme at  higher Reynolds numbers, while exhibiting greater numerical 
stability during the interactive phase of the motion. The effect of interaction is found 
to be negligible during much of the motion, even for a strong vortex, but during the 
latter stages of the calculations, interaction appears to round off the top of the eddy 
and delays breakdown for all Reynolds numbers studied when compared with the 
non-interactive results of Doligalski & Walker (1984). In addition, in the latter stages 
of the calculations, and during the early stages of the interactive phase, a third eddy 
is formed with vorticity of the same sign as the main eddy spawned deep within the 
boundary layer. Such a tertiary eddy has been observed in the experimental work of 
Walker et al. (1987) in their study of the boundary layer induced by a vortex ring. 
During the interactive phase of the motion a streamwise lengthscale emerges whose 
length is approximately O(Re-A), broadly in line with the analytical predictions of 
Elliott, Cowley & Smith (1983). A novel feature of the computations is the use of a 
pseudospectral method (Burggraf & Duck 1982) in the streamwise direction which 
requires no special coding in reversed-flow regions. 

1. Introduction 
Inviscid flows containing vorticity occur in a wide variety of fluid motions; 

however, relatively little is known about how such flows interact with the viscous 
boundary layers which must be present on all solid walls in any real fluid. One such 
interaction can be observed between the trailing vortices produced at  the tip of an 
aircraft wing and the boundary layer formed on the ground. The second example 
may be found in flows over submarines which may often encounter pockets of 
vorticity in the underwater environment. 

The literature on this problem is extremely limited ; experimentally, Harvey & 
Perry (1971) mounted a single wing in a wind tunnel to simulate the take-off or 
landing conditions of an aeroplane. The trailing vortex created at  the wing tip was 
observed to induce a boundary-layer separation in the form of a secondary vortex. 
Theoretically, Doligalski & Walker (1984) and Walker (1978) conducted extensive 
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numerical studies on the boundary-layer flow induced by a rectilinear vortex and 
found that the boundary-layer motion was unsteady and the vortex induces a 
secondary vortex in the vicinity of the boundary, which eventually leads to a 
catastrophic breakdown of the boundary layer. I n  their study, conventional 
boundary-layer techniques were used, and the catastrophic breakdown of the 
boundary layer is manifested in a rapid growt,h in displacement thickness behind the 
vortex which eventually leads to failure of the numerical scheme. Recently, Walker 
et al. (1987) have observed the violent interaction between a vortex ring and the 
boundary layer on a horizontal wall; a similar set of experiments has also been 
performed by Nelson (1  986). 

In the present work we seek to extend the results of Doligalski & Walker to the 
case where there is interaction between the convected rectilinear vortex and 
the boundary-layer flow. I n  interacting-boundary-layer theory, the displacement 
thickness and the pressure distribution are coupled, unlike in conventional boundary- 
layer theory in which the pressure gradient is impressed on the boundary layer (see 
Burggraf 1982; Burggraf et al. 1979; Davis & Werle 1982; and Veldman 1981 for 
application to steady flow problems and Henkes & Veldman 1987 for the only 
application to unsteady flow problems of which the authors are aware). 

A major result of the present work is that a third eddy appears to be spawned deep 
in the boundary layer next to (and of the same rotation as) the main boundary-layer 
eddy, indicative of the results of Walker et al. (1987) and Nelson (1986) for vortex 
rings. In  this regard there are three major purposes of the present work. The first is 
to  determine the effect of interaction between the vortex motion and the boundary 
layer on the breakdown phenomenon. The second purpose is to test a relatively new 
computational method, i.e. that of using the fast Fourier transform (FFT) in the 
streamwise direction, whi& is infinite. The method as applied here was first used by 
Burggraf & Duck (1982) in steady computations of flows past humps. In essence, the 
use of the FFT eliminates the need of special computational techniques to handle 
reversed-flow regions and is very efficient. In  Burggraf & Duck’s (1982) problem they 
found that larger size humps could be considered with fewer grid points in the 
streamwise direction when compared to standard finite-difference techniques. 

The third purpose of the present work is to determine the effect of Reynolds 
number on the flow. The present problem is an example of a situation in which large- 
scale breakaway separation is expected to occur in which the boundary layer and 
inviscid flow interact strongly. Indeed, during the latter stages of the present 
calculations an interactive region is clearly delineated (a region that cannot be 
delineated from the classical boundary-layer calculations of Walker (1  978) and 
Doligalski & Walker (1984)). It is natural to inquire, then, whether the spatial 
dimensions and temporal scaling of this region are consistent with the recent 
analytical work of Elliott, Cowley & Smith (1983) in which the streamwise scale of 
the interactive region is O(Re&) and the timescale is O(I2e-A) (see $5 of that work) 
where Re is the Reynolds number. Our results, it turns out, are broadly in line with 
the spatial scaling based on the calculated results for several values of Reynolds 
number. 

To fix ideas, the flow problem of current interest is the boundary-layer flow 
induced by a convected rectilinear vortex which is outside the boundary layer. Two 
types of bounding surfaces will be considered in this paper : one is a plane surface, the 
other a plane surface with a small hump. A novel feature of this work as mentioned 
previously is that interaction between the inviscid flow and the boundary layer flow 
is incorporated. The flow is assumed to be laminar and two-dimensional and the 
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dimensionless displacement thickness is assumed small and of order of Red. In  the 
present study, separation of the boundary layer is expected for cases of large vortex 
strength. Consequently the displacement thickness will increase drastically around 
the separation region. 

Both the results of non-interacting and interacting theory will be analysed and 
compared. The development of streamline patterns with respect to time will be 
presented for different vortex strengths, as in Doligalski & Walker (1984). The 
development of the interaction region will be examined and the results compared 
with the scales deduced by Elliott et al. (1983); both a plane wall and flow past a 
hump will be examined. It should be noted that the only other apparent application 
of interacting-boundary-layer theory to a problem of this type is that of Henkes & 
Veldman (1987) who considered the boundary-layer flow past an impulsively started 
cylinder a t  several Reynolds numbers from i04-106. As noted by Van Dommelen 
(1981) and others this flow breaks down due to the separation of the boundary layer 
and subsequent start of the vortex shedding process. The results of Henkes & 
Veldman (1987) indicate that interaction does a t  least delay the breakdown process 
if not eliminating it altogether. A similar result is obtained with the present 
calculations ; it will be shown that, depending on vortex strength, the calculations 
may be continued significantly beyond the non-interacting case. In  fact, it is this 
continuation in the calculations that enables the streamwise scale of the strong 
interaction region of Elliott et al. (1983) to be identified. 

The plan of the paper is as follows; in $2, the boundary layer and inviscid flow 
problems are formulated; the inviscid flow solution which consists of the potential 
flow due to the vortex in a uniform stream and an O(Re&) component due to the 
displacement thickness is given and the starting conditions are discussed. In  $3  the 
numerical methods are discussed, and the results for both the plane wall and a hump 
are presented in $4 for Re = 8 x lo4. The effect of Reynolds number on the 
calculations is discussed in $5 and conclusions are presented in $6. 

2. Formulation 
2.1. The bou~ary - layer  problem 

The problem can be defined as follows. A rectilinear vortex convects in a uniform flow 
of speed U, above a plane wall (figure l a )  or a plane boundary with small hump 
(figure l b ) .  In both cases, a boundary layer will develop on the surface. The 
boundary-layer problem is coupled with the inviscid flow via a pressure-displacement 
relation within the interacting-boundary-layer concept. The plane boundary case 
will be considered first. 

The governing equations for this problem are the boundary-layer equations, which 
are given by 

au* au* ap* aZu* 
p -+?A*-+v*- ---+p- 

(at* ax* a,.) ay* - ax* a y z * ’  

au* av* -+- = 0, ax* ay* 

where u*,v* are flow velocities in the x* and y* directions respectively, p is the 
constant density of the flow medium, p* is the pressure in the flow field, and p is the 
viscosity of the medium. 
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FIQURE 1 .  Schematic of the present problem; vortex above (a)  a plane wall, and ( b )  a plane 
wall with a small hump. 

The equations can be transformed into the dimensionless form by defining the 
following dimensionless boundary -layer variables : 

E = - ,  X* y = - R e r ,  Y* t = -  t* 
U U 

(3) 

where a is the vertical distance of the vortex from the plane boundary at time t = 0 
as shown in figure 1 and k* is the dimensional vortex strength.? Re = U, a/v is the 
Reynolds number and Urn is the free-stream speed at z = k 00. Substituting these 
relationships into (1) and (2), the non-dimensional form of the governing equations 

t Xote that this non-dimensionalization is somewhat different from that of Doligalski & Walker 
(1984). In that work all velocities are non-dimensionalized on ( l - a ) U a ,  where a is the non- 
interacting vortex speed (see below) and the vortex strength K in that work corresponds to 
- k* /2x  here. 
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in the inertial frame become 

au au au ap azu  
at + u - + v -  az ay = -- a z + p ’  

au av 
az ay 

- 

-+- = 0. 

Equations (4) are subject to the initial and boundary conditions 

u, v specified a t  t = 0, ( 5 4  

u, v specified as E-+ & 00, 

u = v = O  at y = O ,  

u + U @ , t )  as y + 0 0 ,  

where the inviscid slip velocity U, is given from interacting boundary-layer theory 
(Burggraf et al. 1979) as 

and the displacement 6* is defined by 

U,6*(z,t) = / : ( U , - u ) d y .  ( 7 )  

Here, U, is the edge velocity induced by the inviscid flow corresponding to a single 
vortex above a plane wall and is given by (Milne-Thompson 1960) as 

k Y J t )  U , ( Z , t )  = 1 + -  
K ( z -xv( t ) )2+y:( t ) ’  

where (x,, y,)  is the vortex position. Within the interacting boundary-layer concept, 
the pressure gradient term in ( 4 a )  must be calculated at each time-step; using the 
Euler equation the pressure gradient is given by 

ap au, au, 
az - -+ U,-. 

at a 5  
-- - ( 9 )  

It should be noted here that for the classical boundary-layer problem, posed by 
Doligalski & Walker (1984),  it is easily seen that y,( t )  = constant = y,(O) = 1 and 

dx ( t )  k 
-LL = 1 +- = a = constant. 

dt 4 z  

Consequently, x,(t) = at and hence, in a frame of reference travelling with the vortex 
the inviscid surface speed U, = U,(x) and is independent of time; nevertheless, the 
boundary layer is inherently unsteady. 

For the present study, it is necessary to specify an initial condition. Because the 
principal interest is in the terminal nature of the boundary-layer flow induced by a 
convected vortex and for comparison with the results of Doligalski & Walker (1984),  
their initial state is used in this study. The plane boundary is assumed to be 
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introduced into the already existing uniform and vortex flow field; in other words, 
the effect of viscosity can be imagined to be suddenly present at t = 0 and the flow 
field is similar to a Rayleigh boundary layer. Moreover, because the effect of the 
vortex will diminish at points far away from the vortex, the problem then becomes 
the boundary-layer problem of a uniform flow over a suddenly present plane 
boundary. Hence the solution of the current problem as Z+ f CO, can be described 
as 

where erf denotes the Error Function. 
Equation (1 1 )  suggesLs that a Rayleigh transformation 7 = y/2ti is appropriate ; 

also, transforming the equation to a coordinate system convecting at the speed of the 
vortex in the %-direction given by x = z-x,(t), the governing equations (4) 

U, = erf(y/2tt) (11)  

become 

where .ii is defined by 

and UR is given by (11).  Equations (12) are subject to the boundary conditions 

4% y, t )  = UR(7) + .ii(x, 7,  t), 

I . i i = v = O  at 7 = 0 ,  

3 + 0  as x++co,  

i i+Q(x,t)  as ~ + c o ,  

where = U,- 1. The initial condition is obtained by solving (12) as t+O; the 
methodology is standard and the solution is given by Doligalski & Walker (1984) for 
several terms in a perturbation series in ti, and the result for the initial condition is 
given by 

where &(x, 0) = U,(x, 0) - 1. Finally, the Euler equation for the pressure gradient 
becomes 

u = U;(X,O) u R ( ~ )  at  t = 0, (14) 

ap aQ - aQ 
- -+ (U, + 1 - U,) -. ax at ax -_ - 

The solution for a plane wall with a small bump may easily be obtained by using 
the Prandtl transposition theorem (Rosenhead 1963) with p = ~ - H ( E ) ;  the 
equations are the same in form as (4) with v replaced by v-ucW/dz; the only 
substantial difference is that the displacement thickness is given by 

Note that since H = H ( z )  = H(x+x,(t)) the hump is moving in the coordinate system 
convecting with the vortex. 

The present problem is complicated by the fact that the edge velocity is a function 
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of the displacement thickness, which itself is a function of the velocity. In other 
words, the pressure gradient in the interacting boundary layer is not known until the 
velocity a t  the edge of the boundary layer is found and vice versa, which is the novel 
feature of interacting-boundary-layer theory. Also U.., the velocity at the vortex 
position, can only be found by considering the outer potential flow, and this is 
discussed in the next subsection. 

2.2. The potential flow 
It is well known that the inviscid flow due to a vortex in a uniform stream is given 

y+ Y v  y-  Y v  

. 117) 

u= 1 + -  
2x (X-Xv)2 + (Y  + yvy- (X-Xv)2 + (Y -  y,)Z 

. ,  __ 
'v=- 

271. I(X - xv)2 + (Y -  yvy- (X - xv)2 + (Y+ yv)2] ) 
where (X, Y )  are the (unsealed) inviscid flow coordinates non-dimensionalized with 
respect to  a. The velocity components due to  the displacement thickness are obtained 
by solving the problem for the potential, which is given by 

V2$= 0, 

The solution to  (18) is given in Van Dyke (1975, p. 49) and the results for the 
velocities are 

Consequently the total inviscid flow velocities are given by 

u =  U+U,, v =  V+VD. (20) 

It should be noted that the vertical velocity at the edge of the boundary layer V,  due 
to interaction can be written as (Burggraf 1982) 

The vortex is advanced by evaluating (20) a t  X = x, and Y = yv, and subtracting out 
the contribution due to the vortex itself; the equations are 

Note that V, = O(Re-;). 
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At this stage, we have formulated the problem for a plane wall and for a small 
hump and we can now discuss the numerical methods employed. 

3. Numerical methods 
The numerical scheme used in this study is a combination of finite-difference 

methods and the Fourier-transform method. First, in the x-direction, as mentioned 
previously, the Fourier-transform method is employed ; in y, regular finite differences 
(with non-uniform grid) will be used. Finally, in t the implicit Crank-Nicolson 
marching technique will be employed. To make the numerical scheme more efficient 
and also from physical considerations, coordinate transformations will be made in 
the x- and y-directions. This is based on the belief that most of the activity of the flow 
interaction is expected to occur around the vortex x-position and deep in the 
boundary layer. Hence by employing coordinate transformations, more grid points 
can be concentrated in the regions of intense activity near the boundary and the 
vortex x-position. 

In  deriving the difference equations for the numerical scheme, coordinate 
transformations are first applied to the original governing equation in x and q and, 

Substituting these expressions into (12), the boundary-layer equation then 
becomes 

atz a 2 i i  a i i  
at a2 a Z  

4t ---f" 7- (j"' + 27f ') - = R(6, 2, t ) ,  

where 
ap au, ati ai i  
a6 a2 36 a2 R(6, Z, t )  = - 4tg'-- 2tY'v -- 4t(uR + ii - U,) 9' -- 2t%f '-, 

where f ' = df/dy, g' = dg/dx. The tilde on u in (25) will be dropped for convenience 
in the rest of the section. In the current study, the coordinate transformations used 
in x-6 and 7-2 are 

22 
x = sinhit;, 7 = =. (26) 

The choice of sinh in this case satisfies the requirement of generating a fine grid 
around z = 0. The function in 2 is similar to that used by Duck & Burggraf (1986) 
and resulted in a large decrease in the number of grid points required in the vertical 
direction. Taking the Fourier transform in the 6-direction yields 

aa a@ aa 
at aZ a2 4t--j"'7- (f"+ 2vj")- = R(w, Z, t ) ,  (27) 

where an overbar is used to denote the Fourier transform of that quantity, which is 
defined as 

P(o)  = F(6)  e-iWcd(. (28) L 
The discretization of the Fourier transform is carried out as follows. Let 

6.  = ( j - 1 - m ) A t  f o r j  = 1 ,2 ,  .. . , N ,  

o , = ( k - 1 - m ) A w  f o r k = 1 , 2  ,..., N ,  
3 
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where m is half the total number of grid points ; i.e. N = 2rn. The range of 5, w are 
chosen to ensure F(E) and F ( w )  are small for 5 < El,E > and w < wl ,w  > wN+l 
respectively. Since F(E) is real, from (28) it can be shown that F( - w )  = F*(w) where 
an asterisk denotes the complex conjugate of the quantity. The grid spacing A( and 
A u  should now satisfy the relation 

(30) 
2x 

AEAw = F ,  

and N is required to be a power of 2 in the fast Fourier transform. The fast Fourier 
transform devised by Cooley & Tukey (1965) is used to evaluate the transformation. 

To avoid the complicated convolution integral associated with the Fourier 
transform of the product of two quantities, the pseudospectral method will be used, 
i.e. all the nonlinear terms on the right-hand side of the governing equation will be 
evaluated in the physical domain using the predicted result of the previous iteration 
and then transformed to the spectral domain (Burggraf & Duck 1982). In this regard 
it is useful to discuss computation of terms involving differentiation with respect to 
x, say uaulax. Following Burggraf & Duck (1982), the velocity u is computed by 
inverting the solution in transform space a;  to obtain au/ax, the quantity iwa is 
inverted. The two terms are then multiplied together to obtain the required result in 
physical space ; all other terms involving au/ax in R are obtained in this way. It is 
to be noted that since the x-derivatives of u are not numerically differentiated, there 
is no need for a special differencing procedure to incorporate the possibility of 
reversed flow. Indeed, this is the main advantage of computing the solution in 
transform space. As pointed out by Burggraf & Duck (1982), each point in physical 
space x corresponds to a full range of points in spectral space; the possibility that 
regions of reversed flow may exist is automatically taken into account by the Fourier 
transform. 

Equation (27) can be rewritten in compact form as 

where P = f "+ 27f ' and R is the right-hand side of (27). The finite-difference and the 
Crank-Nicolson techniques can then be applied in z and t ,  which yields 

a2a/az2 and aa/az are evaluated by using central differencing and P is evaluated a t  
t-iAt. The equation can then be solved for $ in terms of the values at the previous 
time-step; values of $ for a at t = 0 are found by using the initial condition given by 
(14) and the values for B are then found by using the continuity equation. The 
truncation errors for the scheme are of order (At)2 and (Az)' because of the central 
differencing used here. 

To complete the formulation of the numerical scheme, the boundary conditions, 
the interaction condition (6), the pressure gradient (15) and the vortex path 
equations (22), (23) also have to be considered. For finding the displacement 
thickness in (7), the Simpson f-rule is used. For the interacting boundary condition, 
(6), the finite-difference method similar to that used in Veldman (1981) is employed, 
in which the integral is approximated at the midpoint of each interval. From 
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Veldman (1981) for a general differentiable function A the scheme can be written 
as 

where h is the grid size in the [-direction. The value of (33) is its simplicity; however, 
as pointed out by Napolitano, Werle & Davis (1978) (the existence of which was 
brought to our attention by Professor J. D. A. Walker), this scheme yields only first- 
order-accurate results. 

Thus, a t  lower Reynolds numbers, where the interaction between the boundary 
layer and the inviscid flow is expected to be stronger, puzzling results were obtained 
using (33). For example, for Re = 44000 the calculation breaks down a t  about 
t = 0.94, and for Re = 8000, the calculation is abruptly terminated at t = 0.81 before 
the interaction regime was reached. Consequently, a new second-order formula, 
originally devised by Napolitano et al. (1978), was applied to the present problem. 
The method is described as follows: here zi = xi+gAxi, and 

Using a Taylor series approximation we evaluate s(t) a t  the midpoint of the interval 
Ei ; 

to second order, where Axj = X ~ + ~ - X ~ .  Here we apply (34) for s = ?(&&*)/ax and we 
use second-order central differencing on the variable x-grid to do this; we have also 
differenced in the [-plane using the relationship between x and 6 with no change in 
the results. It should be noted that the Cauchy integral I is evaluated a t  zj and to 
obtain its value a t  the regular grid points x,, standard second-order Lagrangian 
interpolation was used. Smith & Bodonyi (1985) and Riley (1982) have developed 
similar, higher-order schemes to evaluate the Hilbert integral. 

It should be noted here that the edge condition u = U, at 7 + 00 is satisfied 
iteratively at each time-step. This was done to enable a non-uniform grid spacing in 
the streamwise direction x to be used; smaller physical grid sizes are necessary in 
order to resolve the fine structure of the flow near x = 0- . The alternative is to use 
a constant streamwise grid spacing with the edge condition u = V, satisfied in 
spectral space directly at each time-step. However, at least twice as many grid points 
would be required in the streamwise direction to satisfy the accuracy requirements, 
which are severe in the latter stages of the calculations, and i t  is unlikely that this 
procedure would yield results significantly different from the present results, for the 
times and Reynolds numbers considered here. 

The pressure gradient, (15), is calculated by using central differencing in t and 
central differencing in [. For the initial time-step, two-point backward differencing 
is used. Also the boundary condition in the y-direction is imposed a t  some large but 
finite value of 7, say 7 = 1, as an approximation (see below). 
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The iteration scheme used in this study is summarized as follows. The scheme 
consists of two main loops. Within the inner loop, the boundary-layer equations are 
solved for a specific time-step iteratively. The procedure is as follows. First, (32) can 
be written in tridiagonal form and is solved by using the Thomas algorithm to obtain 
values of velocity U a t  all points of the spectral domain. By inverting ti back to the 
physical domain, the displacement thickness U,S* can then be calculated. The 
subroutine for the interacting boundary condition ( ( 5 a )  with (33)) is then called on 
to obtain the edge velocity U, of the boundary layer. The pressure gradient is next 
computed by using the Euler equation, (15). The vortex is then advanced by (22) and 
(23) using a central differencing scheme in time t .  The process is repeated until the 
change of ii in successive iterations is less than a specified absolute tolerancc value, 
in this case, lo-* or lop5. The calculation then continues to  the outer loop where time 
marching is performed. In  solving (32) for a, under-relaxation was used according to 
the formula 

G = w, ITnew + ( 1 - wr) tiOld, 

where w, is the relaxation factor. Various values of w, have been used for different 
cases to ensure the convergence of the numerical scheme. In most cases, w, = 0.4,0.3, 
or 0.2 were used. The number of iterations in each time-step is generally around 
10-15 a t  the early stages. At increasing times and with intense variation in the flow 
field, 20-30 iterations were required to achieve a convergent solution. At lower 
Reynolds numbers up to 50 iterations were required for a tolerance of lop5 and 

The accuracy of the scheme was first checked by running the program for the non- 
interacting cases corresponding to  those of Doligalski & Walker (1984). It was found 
that agreement between the streamline patterns a t  different time-steps was good. A 
detailed discussion of this aspect of the calculation will be presented in $4. The 
scheme was further tested for different grid Bizes in 6, z and t .  The agreement between 
different grid sizes and time-steps was very good especially for large values of a. In 
the z-direction, based on these tests, 33 points across the boundary layer were 
employed; 128 points were used in the x-direction. The boundary conditions a t  
6 = k co, 7 = 1 were also checked. In  the numerical scheme, finite values are 
employed to approximate these infinite values. And the results showed that 7 = 1 = 6 
is generally adequate for the maximum value for most of the cases, although in 
some cases larger values had to  be used in the later stages of the calculation because 
of the growth of the boundary layer with time. For the boundary conditions in 5, a 
sufficient range has to be chosen to ensure that the disturbance velocity beyond that 
is small and negligible. Tests for different ranges showed that - 11.2 < 6 Q 11.0, 
which in the x-domain corresponds to - 19 < x < 19, is adequate to ensure five 
significant figure agreement in the results with the results of larger ranges. A typical 
time-stepping employed in this work was At = 0.001 for the first 25 time-steps, then 
At = 0.025 for the majority of the rest of the calculations. In many cases the time- 
step was further reduced near breakdown of the numerical scheme; for a = 0.2, 
At = 0.01563 was used 10 steps before failure and in $5 At = 0.010 was used after 
time-step 57, At = 0.005 after time-step 66. 

The numerical method used in this study is believed to be superior to that of 
Doligalski &, Walker (1984). Approximately half the number of grid points were 
employed for the current method to achieve similar results : generally the maximum 
number of mesh points used in this study is about 10000 while in Doligalski & Walker 
(1984), a maximum of 22000 points were required a t  times near failure of the 
numerical scheme. This reduction in the number of grid points can be attributed to 

w, = 0.2. 

12 FLM 200 
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FIGURE 2. Streamlines relative to the vortex for a = 0: (a )  present results, non-interacting, 
t = 0.65; ( b )  Doligalski & Walker (1984) results, t = 0.65; (c) interacting, t = 0.65, Re = 8 x I O P ;  
(d) interacting, t = 0.70, Re = 8 x lo'. Labels correspond to constant fi. 
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the use of non-uniform grids in x and y and also to the FFT method in x as discussed 
earlier. However, the results in the next section indicate that for the non-interacting 
case the current method cannot go further in time despite the use of an FFT 
method. 

4. Results for Re = 8 x lo4 
4.1. The plane wall results 

Solutions have been computed for a variety of vortex strengths and to check the 
validity of the program ; non-interacting solutions for the plane wall have been 
computed for the vortex strengths considered by Doligalski & Walker (1984) ; 
Re = 8 x lo4 has been chosen for comparison with that work. The general features of 
the solutions as a function of a have been reproduced; that is, for a < 0.55 a 
separation bubble forms deep within the boundary layer and grows with time, 
eventually forcing the breakdown of the numerical scheme. Typical results for the 
streamline patterns are shown on figure 2 (a)  ; the stream function $ is defined in the 
usual way : 

and the streamline patterns are relative to the vortex unless otherwise noted. For 
ewe of comparison with Doligalski & Walker (1984), our solutions have been plotted 
on the same x-scale as their solution for infinite Reynolds number, which appears on 
figure 2 ( b ) .  This comparison is for a = 0 a t  t = 0.65 and other cases produced 
comparable results. Note that the two solutions are almost identical and 
consequently our solution appears to reduce correctly when interaction is absent. 

The effect of interaction is exhibited by comparison of figure 2 ( c )  with 2 (a)  or 2 ( b ) .  
Figure 2 ( c )  is the interacting solution at t = 0.65 for Re = 8 x lo4 ; note that the 
streamwise scale on this figure is different from figures 2 (a)  and 2 (b ) .  Nevertheless the 
effect of interaction can be seen to modify the shape of the eddy near its top. On 
figure 2(d)  is the solution for t = 0.70, just before breakdown of the solution. Note 
that a streamwise interacting scale appears to be emerging and this is denoted by the 
arrow on figure 2 ( d )  ; it  is this scale that will be compared with the streamwise scale 
deduced by Elliott et al. (1983). 

On figures 3 and 4 are a sequence of patterns at different times with figure 3 being 
the non-interacting sequence and figure 4 the interacting sequence for a = 0.2 ; the 
interacting sequence is for Re = 8 x lo4. Note that the effect of interaction is fairly 
weak until the later times and that the kinking of the streamline patterns is clearly 
evident in the non-interacting patterns at t = 0.88. The effect of interaction here is 
to round off the top of the eddy, which allows the calculation to proceed further. The 
interacting case breaks down shortly after t = 0.94. Note the emergence of a small 
side lobe which appears to be the beginning of a tertiary eddy ; this side lobe was not 
present in some of the coarser-time-stepping calculations (figure 4d has At = 0.005 at 
t = 0.94). Again the streamwise interaction scale appears to emerge only after the 
non-interacting program has failed (which is really only valid at infinite Reynolds 
number anyway) and the scale is about the same width as for a = 0. Similar results 
are obtained for a = 0.4, the interacting case of which is presented on figure 5 for two 
times; it should be noted that the interaction scale (i.e. the shear layer) appears to 
be independent of a. 

The effect of interaction allows the computation to proceed further in time ; the 
growth of the eddy apparently forces the vortex further out into the free stream, as 

12-2 
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FIGURE 5. Streamline patterns relative to the vortex for a = 0.4; (a) t = 1.08, ( b )  t = 1.25; 
Re = 8 x lo4. Labels correspond to constant z,h. 

shown in figure 6 where the position of the vortex is plotted. The fact that the vortex 
gets pushed further into the outer flow allows further growth of the eddy and the 
computation proceeds further in time. 

One additional comment may be made concerning the solutions presented; the 
displacement thickness results are not significantly altered by the effect of interaction 
for a < 0.55 ; this is apparently because the integrand defining S*, 1 -u/V, remains 
approximately the same as in the non-interacting case ; in ay event, no significant 
differences in the displacement thickness were observed for a < 0.55. It is interesting 
to note here, however, that for a = 0.8 there was a significant change. At  about this 
vortex speed the vortex is actually driven down into the boundary layer slightly and 
this apparently causes an increase in displacemenf thickness directly under the 



1.02 

1.01 * 

g 

2 
'3 
'0 1.00- 

i 

0.99 - 

0.98 
- 

353 

01 = 0.2 3 0.55 (non) - 

I I I I 
1.20 -1.10 -1.00 -0.90 -0.80 - 1.70 

FIQURE 6. Vortex path for different a-values in the interacting cases (labels correspond to a). 

vortex. On figure 7 is depicted the displacement thickness for both the interacting 
and non-interacting cases ; note that S* is actually smaller behind the vortex for the 
interacting case but larger directly under the vortex. 

Similar results were obtained for the case of a hump within the boundary layer and 
these results are discussed next. 

4.2.  Solutions for a hump 
To deduce the effect of an irregular surface shape, solutions have also been produced 
for a hump of the form 

We have produced solutions for /3 = 5.0 and will consider the results for a = 0,0.2, 
and 0.55 for Re = 8 x 10'. It should be noted here that in a coordinate system moving 
with the vortex, the hump moves to the left as time t increases since H = H ( E )  ; hence 
H is also a function of time t .  In  general, the hump destabilizes the calculation 
somewhat in the sense that it hastens breakdown. The results are shown on figure 
8 (a-c) ; the temporal development is similar to that without the hump. Figure 8 (a )  
shows the solution for a = 0 at t = 0.55 ; note that the eddy is located on the leeward 
side of the hump ; the position of the hump is slightly off-centre because the plots are 
in terms of r] = y/2t i .  On figure 8 ( b )  is the solution for a = 0 .2  at t = 0.75; note that 
the eddy is somewhat shorter than for a = 0;  the eddy moves to the windward side 
of the hump for a = 0.55, which is shown on figure 8 ( c )  at t = 1.78 and is thinner than 
for the smaller a. The streamwise interaction scale in this case is also clearly seen in 
figure 8 ( c )  and is about the same width as in the previous no-hump cases. 
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FIGURE 9. Streamline patterns for Re = 8 x lo4 at t = 0.94 using the Napolitano et al. (1978) 
scheme. The streamline values are the same a8 in figure 4. 

5. The effect of Reynolds number 
It has been established that the basic eruption mechanism is the same for all 

a < 0.55, and in this section results will be presented for a = 0.2. The calculations 
for Re = 8 x lo4 using the Napolitano et al. (1978) scheme appear to agree with those 
using the Veldman scheme for times t < 0.88 which, for a = 0.2, is somewhat within 
the interactive phase of the motion. However, at smaller Reynolds numbers, use of 
the more accurate Cauchy integrator is crucial to obtain results well into the 
interactive regime. As mentioned previously, the calculations at the lower Reynolds 
numbers would mysteriously break down before the interactive regime was reached. 

Additional grid and time-step studies were performed and it was found that 33 
points in the x-direction were sufficient as with the Veldman scheme ; however, with 
the Napolitano et aZ. scheme, it was found that a smaller 5-grid improved the results 
significantly, especially at  the larger times and lower Reynolds numbers of interest 
in this section. 

It should be mentioned that ideally a small Aw as well as small A[ is necessary for 
an accurate solution ; that is, the solution needs to be accurate in spectral space as 
well as in physical space. This fact is illustrated in the relationship Aw = 2x/NA(;  
note that as A[ is decreased, Aw is increased and since the error in approximating the 
Fourier integral is O(Aw)' the error in the spectral plane actually increases as A[ 
decreases. The accuracy problem is aggravated for times t 2 0.92 (for a = 0.2) where 
the effect of interaction is greatest. The effect of increasing Aw emerges in aliasing 
within the spectral solution at the ends of the spectral grid, which affects the solution 
near [ = 0 in the physical grid. As mentioned previously, for times less than about 
0.88 (for a = 0.2), for all Reynolds numbers tested, a physical grid size of Aw = 0.175 
with N = 128 was suitably accurate when comparing streamline patterns and vertical 
velocities at the edge of the boundary layer. However, for times greater than about 
0.88, it was found that a smaller &grid was required with A[ = 0.12,N = 256. 
Smaller A[ resulted in increased aliasing in the spectral grid and the results for 
A t  = 0.14 are not significantly different from those of A5 = 0.12. Nevertheless, 
because obtaining solutions in the strongly interactive phase of the motion is so 
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(4 

FIQURE 1 1 .  Streamline patterns at t = 0.94 for two Reynolds numbers. (a) Re = 4.4 x lo4, 
( b )  Re = 2.2 x lo4. Streamline values are the same as in figure 4. 

crucial, the results of this section are for A t  = 0.12, N = 256. This corresponds to a 
grid size in the x-plane of about 0.04 near the formation of the secondary eddy. 
Additional runs were made with N = 512 and a constant grid size of Ax = 0.04 with 
a slight improvement in aliasing (i.e. somewhat smaller ‘wiggles’) ; however the 
streamline patterns and the vertical velocity a t  the edge of the boundary layer are 
substantially unchanged. A smaller time-step has been used in the results of the 
present section and here At = 0.005 or 0.0025 in the latter stages of the calculations. 

On figure 9 are the streamline patterns for Re = 8 x lo4 a t  t = 0.94 calculated using 
the new scheme. Note the presence of a tertiary eddy with the same rotation as the 
main eddy at  about 6 = - 1 ; such an eddy has been observed in the experimental 
work of Walker et al. (1987) and more will be said about this subsequently. 

Figure 10 shows results computed for various Reynolds numbers at t = 0.75 before 
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the strong interaction regime is reached. Note that at this time, very little difference 
is observed in these streamline patterns for different Reynolds numbers. 

Figure 11 is a sequence of results for two other Reynolds numbers at t = 0.94 to 
illustrate the structure of the interaction regime. Note that as the Reynolds number 
decreases, the interaction appears weaker a t  this (fixed) time as the vortex gets 
pushed further into the outer flow. Note also that the interaction region gets wider 
as R e  decreases. The vertical velocity a t  the edge of the boundary layer is shown on 
figure 12 for the cases of figure 11 and for R e  = 80000. The time t = 0.94 is close to 
the time a t  which the numerical scheme breaks down for R e  = 80000 and so the 
amplitude of the edge velocity is very large. As the Reynolds number decreases, the 
amplitude reduces since the interaction prolongs the calculation. 

To illustrate the temporal development of the flow, on figure 13 are depicted 
results for R e  = 44000 for times t = 0.88, 0.90, 0.92, 0.96. This sequence of figures is 
presented to illustrate the development of the tertiary eddy from a small side lobe 
which begins to form a t  about t = 0.88. By t = 0.92 the lobe is about ready to break 
off and by t = 0.96 the solution has begun to develop a numerical instability (i.e. the 
wiggles) near the shear layer position which appears to be a result of aliasing in 
the spectral grid. By t = 0.98 (not shown) the numerical instability has spread and 
the results are no longer very accurate although the calculations may be continued a 
short time further. On figure 14 are the results for the edge velocity at  t = 0.88,0.92, 
0.96, for R e  = 44000. It should be noted that the sharp spikes depicted on figures 12 
and 14 in the edge velocity appear to be physical and are present for all grid sizes 
tested (see for example, Henkes & Veldman 1987, figures 5, 6). 

The presence of a tertiary eddy on figures 9, 11, 13 is especially interesting. As 
mentioned previously, Walker et al. (1987) have investigated the interaction of a 
vortex ring with a boundary layer and in flow visualization studies have observed the 

FIGURE 12. Vertical velocity at the edge of the boundary layer at  t = 0.94 for several 
Reynolds numbers. 
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the results at t = 0.94. 
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FIGURE 14. Vertical velocity at the edge of the boundary layer for Re = 4.4 x lo4 for several 
times corresponding to results depicted on figure 13. 

(4 
Re X Y 

80000 -0.81511 1.00379 
44000 -0.816 18 1.00512 
22000 -0.81786 1.00723 

( a )  
t X Y 

0.88 -0.82787 1.00426 
0.90 -0.82397 1.00454 
0.92 - 0.820 07 1.004 82 
0.96 -0.81228 1.00543 

TABLE 1. (a) Vortex position at t = 0.94 for several Fteynolds numbers. The initial position 
of the vortex is ( -  1, l ) .  ( b )  Vortex position at various times for Re = 44OOO. 

formation of a tertiary vortex outboard of the primary vortex ring and of the same 
aigned vorticity as the secondary ring (aee figures 8 and 9 of Walker et al. 1987). 
Although the ring problem is three-dimensional and the three vortices are not in the 
same relative positions as in the present work, the formation of a tertiary eddy 
appears consistent with the experimental results of that paper. The formation of this 
third eddy has occurred for all Reynolds numbers, Re 5 80000 where interaction 
processes are significant and cannot be predicted by classical boundary-layer 
theory. 

The vortex path variation as a function of Reynolds number using the Napolitano 
et al. scheme is similar to that depicted on figure 9 for different values of a ;  to 
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FIGURE 15. Width of the interaction region 1 as a function of Reynolds number Re; th: solid 
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illustrate this behaviour, on table 1 ( a )  is the vortex position a t  t = 0.94 for several 
Reynolds numbers; on table l ( b )  is the vortex position a t  various times in the 
interactive regime for Re = 44000. 

It is of interest a t  this stage to analyse the shear-layer interaction regime depicted 
on figures 9 and 1 1  in more detail. Elliott et al. (1983) speculate that the next stage 
in the boundary-layer breakdown phenomena is the development of a streamwise 
lengthscale O(Re-h) which develops on a timescale of O(Re-ii) ; the vertical scale in 
this scenario is O ( R e h )  as well. To determine whether the present calculations are 
indeed approaching this scenario, the width of the interaction regime, say 1, is plotted 
as a function of Reynolds number on figure 15. Estimates of the width of the 
interaction region have been obtained from the results presented on figures 9 and 1 1  
as well as for results for Re = 8000 (not shown). These results have been fitted to a 
curve of the form 1 = cRePb ; the solid line is the least-squares curve fit result which 
is I = 4 . 7 9 6 R e ~ O . ~ ~ ~ .  This result is broadly in line with the Elliott et al. (1983) results 
and the dashed line in the figure is 1 = 2.391Re-A, where the constant is determined 
by matching with the Re = 8 x lo4 results. It is clear that the numerical results 
produce the general trend ; however, it  appears that the numerical results consistently 
overestimate the result. It should be noted here that there is some latitude in the 
choice of where the interaction region begins and ends and care was taken to be 
consistent for each Reynolds number. Generally, the right-hand boundary of the 
region was obtained by drawing a vertical line tangent to the main eddy a t  its right- 
most point ; the left-hand boundary was estimated to be to the left of the kink in the 
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streamlines a t  the top of the main eddy. At present, detailed calculations are being 
performed to ascertain the time-scale of the eruption. 

6. Summary and conclusions 
In the present paper, the solution for the boundary layer induced by a convected 

rectilinear vortex has been computed numerically using interacting boundary-layer 
theory. Solutions have been presented for Reynolds numbers of 8000 and higher and 
the results are the first attempt a t  a description of the subsequent strong interaction 
between the vortex and the boundary layer which is indicated by the breakdown of 
the numerical scheme for all Reynolds numbers considered. A novel feature of the 
present work is the use of the fast-Fourier-transform technique in the streamwise 
direction which requires no special coding in reversed-flow regions as in Doligalski & 
Walker (1984) and in Henkes & Veldman (1987). The results have been compared 
with those of classical boundary-layer theory for a Reynolds number of 8 x lo4; at 
this Reynolds number, the computations may be continued beyond the classical 
boundary-layer result for all vortex strengths studied. Additional calculations (not 
shown) show that the interacting boundary-layer results collapse to those of non- 
interacting theory (i.e. Doligalski & Walker 1984) at about a Reynolds number of 
8 x lo5 for the grid sizes considered. 

The effect of interaction at R e  = 8 x lo4 is substantial; locally in space, for rather 
high-strength vortices (a  < 0.55) ,  the effect is to round the top edge of the eddy 
which forms under the vortex (figures 3 and 4).  A kink appears, however, at  a later 
time and the computations cannot be continued further in time in a manner similar 
to that described by Doligalski & Walker (1984). The effect of interaction is also local 
in time; the streamline patterns relative to  the vortex in the two cases described just 
above differ only in the latter stages of the calculations (compare figures 3c ,  4b). 

The effect of Reynolds number on the calculations is significant. For 8 x lo4 < 
R e  < 8 x lo5, the interacting-boundary-layer calculations differ from the asymptotic 
results only in the very latter stages of the calculations. For R e  > 8 x lo5 the 
differences between the two solutions are insignificant. Extensive calculations for 
2.2 x lo3 < Re < 8 x lo4 indicate, however, that the results are strongly dependent on 
Reynolds number ; in this Reynolds-number regime a new second-order-accurate 
scheme originally employed by Napolitano et al. (1978) has been adapted to the 
present work. The calculations could then be continued significantly further on in 
time when compared with results computed using the simple Veldman scheme 
(equation (33)). 

A major result of the present work is that a tertiary eddy is spawned next to the 
secondary eddy late in the interaction process. The tertiary eddy initially appears in 
the form of a side lobe with eventually grows and breaks off the secondary eddy (see 
figures 9 and 13). This occurrence is similar to that observed by Walker et al. (1987) 
for the case of a vortex ring. The vorticity of the tertiary eddy is of the same sign as 
that of the secondary eddy although the configuration of the vortices is not the same 
as in the vortex ring problem. 

The presence of interaction also allows the formation of a shear layer directly 
above the recirculating eddy spawned by the parent vortex, which is not observed in 
the classical boundary-layer calculations of Doligalski & Walker (1984). The 
formation of this shear layer appears to be crucial to the description of the next stage 
in the interactive process. The streamwise length of this region (for a = 0.2) is about 
Re-0.331, in broad agreement with the theoretically postulated interactive process 
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described in Elliott et al. (1983). In this regard, the present calculations appear to be 
illustrative of the early stages of the violent interaction process between the 
boundary layer and the inviscid flow which occurs in large-scale unsteady separation. 
However, a full description of the interaction phase remains elusive. Moreover, the 
timescale of the interaction (i.e. t - t ,  = O(I3e-A) from Elliott et al. (1983) is not 
evident from the present calculations and must await further study. 

It should also be said that the present calculations support the view of Doligalski 
& Walker (1984) that the boundary layer undergoes an unsteady separation process 
(i.e. separation meaning the appearance of a closed recirculating eddy within the 
boundary layer) which is consistent with the Moore-Rott-Sears model (Sears & 
Telionis 1975). The incorporation of interaction does not significantly modify the 
process by which the eddy appears ; however, it does change the time of appearance 
and subsequent development of the flow depending on the value of the Reynolds 
number. 

Lastly, it should be pointed out that Tollmien-Schlichting waves have not been 
seen in any of our calculations. Although it is difficult to say why this is so, it may 
be that use of the FFT in the present problem suppresses these waves. Another 
possibility is that the present flow evolves on an O(1) timescale, whereas TS waves 
appear over a timescale of O ( R e d ) .  

The authors are grateful for helpful discussions of this work with Professor 
J. D. A. Walker and Professor 0. R. Burggraf and to the referees for their insightful 
comments. The authors are also grateful to Professor Cunzhen Zhang of Tsinghua 
University who prepared the figures for the results of $5. One of the authors 
(A.T.C.) is also grateful to the Pittsburgh Supercomputing Center and the Ohio 
Supercomputer Center for time to perform some of the calculations presented 
in this work. This paper is dedicated to A. T. Conlisk, Sr. 

Note added in proof. It has recently been suggested to one of the authors (A.T.C.) 
by F. T. Smith that the solutions presented here may be moving toward a breakdown 
similar to that described in his paper (Smith 1988). Indeed, calculations being done 
presently (Conlisk 1989), which focus on the time evolution of the pressure gradient 
and the pressure, clearly show evidence of a presure gradient spike which may be 
reminiscent of the ‘moderate breakup’ described by Smith. It is unclear, however, if 
the calculations are far enough into the interactive regime to correspond precisely to 
the ‘breakup’ described. It also seems that the solutions presented in this paper are 
leading to a breakdown reminiscent of what Smith & Burggraf (1985, p. 38) refer to. 
Finally, it should be noted that Peridier, Smith & Walker (1988) have also presented 
calculations for the classical boundary layer in a Lagrangian coordinate system for 
a vortex in a stagnant fluid and were able to continue the calculations until the 
singularity in the displacement thickness forms. Indeed, there is evidence to suggest 
that Lagrangian methods may be superior to the Eulerian methods used in the 
present problem. 
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